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A High-Quality Speech and Audio Codec With
Less Than 10 ms Delay
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Abstract—With increasing quality requirements for multime-
dia communications, audio codecs must maintain both high
quality and low delay. Typically, audio codecs offer eitherlow
delay or high quality, but rarely both. We propose a codec that
simultaneously addresses both these requirements, with a delay
of only 8.7 ms at 44.1 kHz. It uses gain-shape algebraic vector
quantisation in the frequency domain with time-domain pitch
prediction. We demonstrate that the proposed codec operating
at 48 kbit/s and 64 kbit/s out-performs both G.722.1C and MP3
and has quality comparable to AAC-LD, despite having less than
one fourth of the algorithmic delay of these codecs.

EDICS Category: SPE-CODI, AUD-ACOD

Index Terms—audio coding, speech coding, super-wideband,
low-delay, transform coding

I. I NTRODUCTION

Meeting increasing expectations for video-conferencing and
other communication applications requires a high-quality, very
low delay speech and audio codec. Decreasing the delay
both reduces the perception of acoustic echo and enables
new applications, such as remote music performances [1].
Popular speech codecs such as AMR-WB [2], G.729.1 [3], and
Speex [4] have a low-to-medium quality range, do not support
sampling rates above 16 kHz, and have total algorithmic delays
ranging from 15 ms to 30 ms. On the other hand, commonly
used audio codecs, such as MP3 and Vorbis [5], can achieve
high quality but have delays exceeding 100 ms. None of these
codecs provide both high quality and very low delay.

Since Code-Excited Linear Prediction (CELP) [6] was pro-
posed in the 1980s, it has been the most popular class of
speech coding algorithms. It is, however, generally limited
to sampling rates below 16 kHz. In the authors’ experience
and as reported in [2], CELP’s noise shaping is difficult to
control when the spectrum has high dynamic range, as is
common for sampling rates of 16 kHz and above. To the
authors’ knowledge, CELP has not been applied to speech
codecs beyond a 16 kHz sampling rate. Even at 16 kHz,
many CELP-based codecs do not use CELP for the entire
audio band. AMR-WB applies CELP on a down-sampled 12.8
kHz signal, while G.729.1 uses an MDCT for frequencies
above 4 kHz [3], and Speex encodes 16 kHz speech using
a Quadrature Mirror Filter and two CELP encoders [4].
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Unlike speech codecs, most audio codecs designed for mu-
sic now use the Modified Discrete Cosine Transform (MDCT).
The algorithmic delay of an MDCT-based codec is equal to
the length of the window it uses. Unfortunately, the very short
time window required to achieve delays below 10 ms does not
give the MDCT sufficient frequency resolution to model pitch
harmonics. Most codecs based on the MDCT use windows
of 50 ms or more, although there are exceptions, such as
G.722.1C and AAC-LD, which use shorter windows.

We propose a new algorithm called the Constrained-Energy
Lapped Transform (CELT), detailed in Sections II and III, that
uses the MDCT with very short windows. It explicitly encodes
the energy of each spectral band, constraining the output to
match the spectral envelope of the input, thus preserving its
general perceptual qualities. It incorporates a time-domain
pitch predictor using the past of the synthesis signal to model
the closely-spaced harmonics of speech, giving both low delay
and high resolution for harmonic signals, just like speech
codecs [6]. For non-harmonic signals, the energy constraints
prevent the predictor from distorting the envelope of the signal,
and it acts as another vector quantisation codebook that only
uses a few bits. The codec has the following characteristics:

• a 44.1 kHz sampling rate,
• a 8.7 ms algorithmic delay (5.8 ms frame size with 2.9

ms look-ahead),
• high quality speech around 48 kbit/s, and
• good quality music around 64 kbit/s.

We give the results of a number of experiments in Sec-
tion IV. We performed subjective listening tests against several
other codecs, and found CELT to equal or out-perform both
G.722.1C and AAC-LD, while achieving significantly less
delay than all of them. We also performed an objective analysis
of the effect of transmission errors and found CELT to be
robust to random packet loss rates up to 5% and bit error
rates (BER) as high as3 × 10−4 (0.03%).

II. CONSTRAINED-ENERGY LAPPEDTRANSFORM

One of the key issues with MDCT-based codecs is the time-
frequency resolution. For example, a codec proposed in [7]
uses a 35 ms window (17.5 ms frames) to achieve sufficient
frequency resolution to resolve the fine structure of pitch
harmonics in speech. CELT’s very low delay constraint implies
that it must use a very short MDCT and hence has poor
frequency resolution. To mitigate the problem, we use a long-
term predictor that extends far enough in the past to model an
entire pitch period.

Another issue with using very short frames is that only
a very small number of bits is available for each frame.
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CELT must limit or eliminate meta-information, such as that
signalling bit allocation, and will usually have just a few
bits available for some frequency bands. For that reason, we
separate the coding of the spectral envelope from the coding
of the details of the spectrum. This ensures that the energy in
each frequency band is always preserved, even if the details
of the spectrum are lost.

CELT is inspired by CELP [6], using the idea of a spectrally
flat “excitation” that is the sum of an adaptive (pitch) codebook
and a fixed (innovation) codebook. The excitation represents
the details of the spectrum after the spectral envelope has
been removed. However, unlike CELP, CELT mainly operates
in the frequency domain using the Modified Discrete Cosine
Transform (MDCT), so the excitation in CELT is a frequency-
domain version of the excitation in CELP. Similarly, the adap-
tive codebook is based on a time offset into the past with an
associated set of gains, and the innovation is the part of the
excitation that is not predicted by the adaptive codebook.

The main principles of the CELT algorithm are that
• the MDCT output is split in bands approximating the

critical bands;
• the encoder explicitly codes the energy in each band

(spectral envelope) and the decoder ensures the energy
of the output matches the coded energy exactly;

• the normalised spectrum in each band, which we call the
excitation, is constrained to have unit norm throughout
the process; and

• the long-term (pitch) predictor is encoded as a time offset,
but with a pitch gain encoded in the frequency domain.

A block diagram of the CELT algorithm is shown in Fig. 1.
The bit-stream is composed of 4 sets of parameters: the
energy in each band, the pitch period, the pitch gains, and
the innovation codewords. The most important variables are
defined in Fig. 2.

The signal is divided into 256 sample frames, with each
MDCT window composed of two frames. To reduce the delay,
the overlap is only 128 samples, with a 128-sample constant
region in the centre and 64 zeros on each side, as shown in
Fig. 3. For the overlap region, we use the Vorbis [5] codec’s
power-complementary window:

w (n) = sin

[
π

2
sin2

(
π
(
n + 1

2

)

2L

)]
, (1)

whereL = 128 is the amount of overlap. Although a critically
sampled MDCT requires a window that is twice the frame size
we reduce the “effective overlap” with the zeros on each side
and still achieve perfect reconstruction. This reduces thetotal
algorithmic delay with very little cost in quality or bit-rate.
We use the same window for the analysis process and the
weighted overlap-and-add (WOLA) synthesis process.

A. Bands and Energy

CELT exploits the fact that the ear is mainly sensitive to the
amount of energy in each critical band. The MDCT spectrum
is thus divided into 20 bands of roughly one critical band each,
although the lower frequency bands are wider due to the low
MDCT resolution. We refer to these bands as theenergy bands.

α inter-frame energy prediction coefficient
β inter-band energy prediction coefficient
µ mean energy in a band (fixed, computed offline)
b band index, loosely following the critical bands
E energy in bandb for frame ℓ (alternativelyEdB in

dB scale)
Ẽ quantised energy (alternativelỹEdB in dB scale)
ga adaptive codebook gain
g̃a quantised adaptive codebook gain
gf fixed (innovation) codebook gain
J cost function for the innovation search
K number of pulses assigned to a band
ℓ frame index
L length of the overlap (where the window is neither

one nor zero)
N number of MDCT samples in a band
nk position of thenth innovation pulse
p normalised adaptive code vector (pitch or folding)
r residual after prediction (unquantised innovation)
S coarse energy quantiser resolution (6 dB)
sk sign of thekth innovation pulse
T pitch period: time offset used for the long-term

predictor
V number of pulse combinations
w window function
x excitation: MDCT coefficients after normalisation
x̃ quantised excitation
y quantised innovation
z MDCT coefficients
z̃ quantised MDCT coefficients

Figure 2. Summary of variable definitions. Many of these variables have
indicesb and ℓ, which are often omitted for clarity.
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Figure 3. Power-complementary windows with reduced overlap. The frame
size is 256 samples, with 128 samples overlap. The total algorithmic delay is
384 samples.

We normalise the MDCT spectrum in each band and transmit
the energy separately. Letzb (ℓ) be the MDCT spectrum in
band b at time frameℓ. Then the normalised excitation in
bandb is

xb (ℓ) =
zb (ℓ)√
E (b, ℓ)

, (2)

whereE (b, ℓ) = z
T
b (ℓ) zb (ℓ) is the energy in bandb, so that

x
T
b (ℓ)xb (ℓ) = 1.
A quantised version of the energy and the spectrum in each

band is transmitted to the decoder so that the signal can be
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Figure 1. Overview of the CELT algorithm. The complete encoder includes the decoder part because the encoding process refers to previously decoded
portions of the synthesis signal. Parameters transmitted to the decoder are shown in bold and the parameters that are synchronised between the encoder and
the decoder are shown with dotted lines. Quantisers are denoted by theQx operators.

recovered using

z̃b =

√
Ẽ (b, ℓ)x̃b (ℓ) , (3)

where the quantised excitationx̃b (ℓ) still obeys
x̃

T
b (ℓ) x̃b (ℓ) = 1. This gain-shape approach has the

advantage of preserving the spectral envelope regardless of
the bit-rate used to encode the “details” of the spectrum. It
also means that the spectral envelopeE (b, ℓ) must be encoded
at sufficient resolution, sincẽxb (ℓ) cannot compensate for
the quantisation error iñE (b, ℓ). This is unlike CELP codecs,
where increasing the bit-rate of the excitation can partially
compensate for quantisation error in the LP coefficients.

From here on, unless we are processing multiple bands or
multiple frames at once, the frequency bandb and time frame
ℓ are omitted for clarity.

B. Pitch Prediction

CELT uses pitch prediction to model the closely-spaced
harmonics of speech, solo instruments, or other highly periodic
signals. By itself, our short block transform is only capable of
resolving harmonics if the period is an exact multiple of the
frame size. For any other period length, the current window
will contain a portion of the period offset by some phase.
We search the recently decoded signal data for a window that
covers the same portion of the period with the same phase
offset. While the harmonics will still not resolve into distinct
MDCT bins, for periodic inputs the predictor will produce the
same pattern of energy spreading.

The pitch predictor is specified by a period defined in the
time domain and a set of gains defined in the frequency
domain. The pitch period is the time offset to the window in
the recent synthesis signal history that best matches the current
encoding window. We estimate the period using the frequency-
domain generalised cross-correlation between the zero-padded
input window and the lastLp = 1024 decoded samples [8].
We use a weight function to normalise the response at each
frequency by the magnitude of the input window’s spectrum,
which is a crude substitute for the perceptual weight CELP
uses when computing time-domain cross-correlation. Because

the delayed signal used for pitch cannot overlap with the
current frame, the minimum delay possible isN + L (384
samples). This corresponds to a 115 Hz fundamental, meaning
that for female speakers the estimated period is usually a
multiple of the real pitch period. Since the maximum period
is equal toLp, there areLp −N −L+1 = 641 possible time
offsets.

Given the period, we compute the MDCT on the windowed,
delayed synthesis signal and normalise it to have unit magni-
tude in each band. We apply the gain to the normalised signal,
p, in the frequency domain, allowing us to vary the gain as
a function of frequency. We compute the gain in each band
between 0 and 8 kHz as

ga = gdamp

x
T
p

pTp
= gdampx

T
p , (4)

wheregdamp is the gaindamping factor that also acts as an
upper bound for the gain, sincexT

p ≤ 1. Above 8 kHz,
the adaptive codebook uses spectral folding from the current
frame, as described in Section III-C3. Because bothx andp

are normalised, the optimal gain may never exceed unity. This
is unlike the CELP algorithm, where the optimal pitch gain
may be greater than unity during onsets, as mentioned by [2],
which limits the gain to 1.2 to prevent unstable behaviour. We
limit the gain togdamp = 0.9 to improve robustness to packet
loss, not to avoid instability.

We apply the pitch gain in the frequency domain to account
for the weakening of the pitch harmonics as the frequency
increases. While a 3-tap time-domain pitch gain [9] works
with an 8 kHz signal, it does not allow sufficient control of
the pitch gain as a function of frequency for a 44.1 kHz signal.

C. Innovation

In a manner similar to the CELP algorithm, the adaptive
codebook and fixed codebook contributions for a certain fre-
quency band are combined with

x̃ = g̃ap + gfy , (5)

where g̃a is the quantised gain of the adaptive codebook
contribution p and gf is the gain for the fixed codebook
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contributiony. Unlike CELP, the fixed codebook gaingf does
not need to be transmitted. Because of the constraintx̃

T
b x̃b = 1

and knowing thatpT
p = 1, the fixed codebook gain can be

computed as

gf =

√
g̃2

a (yT p)
2

+ yT y (1 − g̃2
a) − gay

T
p

yT y
. (6)

If g̃a = 0, then (6) simplifies togf = 1/
√

yT y, which only
ensures thatgfy has unit norm.

III. QUANTISATION

This section describes each of the quantisers used in CELT.
As shown in Fig. 1, we use three different quantisers: one
for the band energies, one for the pitch gains, and one for
the innovation. We entropy code the quantised results with
a range coder [10], a type of arithmetic coder that outputs
eight bits at a time. For other quantisers, entropy coding is
not necessary, but we still use the range coder because it
allows us to allocate a fractional number of bits to integers
whose size is not a power of two. For example, using a range
coder we can encode an integer parameter ranging from 0 to
2 using three symbols of probability1/3. This requires only
log2 3 ≈ 1.59 bits instead of the 2 bits necessary to encode
the integer directly.

A. Band Energy Quantisation (Q1)

Efficiently encoding the energiesE (ℓ, b) requires elimi-
nating redundancy in both time and frequency domain. Let
EdB (ℓ, b) be the log-energy in bandb at time frameℓ We
quantise this energy as

qb (ℓ) =

〈
EdB (ℓ, b) − µb − αẼdB (ℓ − 1, b)− D (ℓ, b)

S

〉
,

(7)

ẼdB (ℓ, b) = S
(
qb (ℓ) + µb + αẼdB (ℓ − 1, b) + D (ℓ, b)

)
,

(8)

D (ℓ + 1, b) = D (ℓ, b) + µb + (1 − β) Sqb (ℓ) , (9)

where〈·〉 denotes rounding to the nearest integer,qb (ℓ) is the
encoded symbol,µb is the mean energy for bandb (computed
offline), S is the quantisation resolution in dB,α controls the
prediction across frames, andβ controls the prediction across
bands. Not taking into account the fact that the prediction
in (7) is based on the quantised energy, the 2-Dz-transform
of the prediction filter is

A (zℓ, zb) =
(
1 − αz−1

ℓ

)
·

1 − z−1
b

1 − βz−1
b

. (10)

To find the optimal values forα and β, we measure the
entropy in the prediction error prior to encoding. Fig. 4 shows
that prediction can reduce the entropy by up to 33 bits per
frame. The use of inter-frame prediction results in a reduction
of 12 bits compared to coding frames independently. Based
on Fig. 4, we selectα = 0.8, for which β = 0.6 is optimal.
This provides close to optimal performance while being more
robust to packet loss than higher values ofα.
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Figure 4. Entropy of the energy prediction error (quantisedwith 6 dB
resolution) as a function of the inter-frame prediction coefficient α using the
corresponding optimal value ofβ. The lower bound curve is a measurement
of the entropy based on the probabilities measured on the same data.

We have found experimentally that the distribution of the
prediction errorq is close to a generalised Gaussian distribu-
tion of the form

N (EdB) ∝ e−|
E−µ

σ |γ , (11)

with γ ≃ 1.5. While using (11) directly in the entropy coder
would result in the minimal average bit-rate for encoding the
energy, we prefer to use a Laplace distribution. By overes-
timating the least probable values, the Laplace distribution
yields a more constant bit-rate over time, with very little
penalty to the average bit-rate. The achieved rate is only 2 bits
above the lower bound. Exponential-Golomb codes [11] could
encode the Laplace-distributed variables with little penalty, but
since the innovation (Q3) requires a range coder, we re-use that
here.

Once the energy is quantised and encoded at a coarse 6 dB
resolution, a finer scalar quantisation step (with equiprobable
symbols) is applied to achieve a variable resolution that de-
pends on the frequency and the bit-rate. We use this coarse-fine
quantisation process for two reasons. First, it ensures that most
of the information is encoded in a few bits, which can easily
be protected from transmission errors. Second, it allows usto
adjust the fine quantisation of the energy information to control
the total rate allocated to the energy. We have determined
empirically that best results are obtained when the energy
encoding uses about 1/5 of the total allocated bits.

B. Pitch Gain Quantisation (Q2)

As described in Section II-B, we compute pitch gains for
each band below 8 kHz. While there is a large correlation
between the gains, simple prediction as used forQ1 is insuffi-
cient. Instead, the gains are vector-quantised using a 128-entry
codebook (7 bits). To limit the size of the codebook, only 8
values per entry are considered, so some adjacent bands are
forced to have the same quantised gain. Using 8 bits for each
value, the codebook requires only 1024 bytes of storage. When
a special entry in the codebook composed of all zeros is used,
the pitch period does not need to be encoded. Because the
pitch gain is more sensitive to errors when its value is close
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to one, we optimise the codebook in thewarped domain:

g(w)
a = 1 −

√
1 − g2

a . (12)

The codebook is trained and stored in the warped domain
g
(w)
a so that we can search the codebook using the Euclidean

distance metric. Once the quantised warped gainsg̃
(w)
a are

found, the quantised gains areunwarped by

g̃a =

√
1 −

(
1 − g̃

(w)
a

)2

.

C. Innovation Quantisation (Q3)

Because of the normalisation used in CELT, the innovation
data lies on the surface of a hypersphere. While no optimal
tessellation is known for a hypersphere in an arbitrary number
of dimensions, a good approximation is a unit pulse codebook
where a code vectory with K pulses is constructed as

y =

K∑

k=1

s(k)εn(k) , (13)

wheren(k) ands(k) are the position and sign of thekth pulse,
respectively, andεn(k) is the n(k)th elementary basis vector.
The signssk are constrained such thatn(j) = n(k) implies
s(j) = s(k).

We search the codebook by minimising the square error
between the residualr = x − gap andy:

y =argmin
y

‖r − gfy‖
2 , (14)

=argmin
y

(
r

T
r− 2gfr

T
y + g2

fy
T
y
)

, (15)

=argmin
y

(
r

T
r + J

)
, (16)

J = − 2gfr
T
y + g2

fy
T
y . (17)

We only need to calculateJ . The constant term,rT
r, can be

omitted.
We perform the search one pulse at a time, constraining the

sign to match that ofr at each pulse position. Assuming that
we have already selected(k − 1) pulses, we choose the next
pulse positionn(k) by optimising (15). LetR(k)

yp = p
T
y

(k)

with y
(k) containingk pulses and defineR(k)

ry andR
(k)
yy simi-

larly. Then the correspondingJ (k) can be computed efficiently
for each new pulse using the recursion

s(k) =sign (rn(k)) , (18)

R(k)
yp =R(k−1)

yp + s(k)pn(k) , (19)

R(k)
ry =R(k−1)

ry + s(k)rn(k) , (20)

R(k)
yy =R(k−1)

yy + 2s(k)y
(k−1)

n(k) + 1 , (21)

g
(k)
f =

√
g̃2

a

(
R

(k)
yp

)2

+ R
(k)
yy (1 − g2

a) − g̃aR
(k)
yp

R
(k)
yy

, (22)

J (k) = − 2gfR(k)
ry + g2

fR(k)
yy . (23)

Again, if we haveg̃a = 0, then the cost function simplifies
to the standard cost functionJ = −r

T
y/
√

yT y. Failing to
take into account the pitch gain and using the standard cost

function yields poorer performance than not using a pitch
predictor at all, since a small error in the fixed codebook
contribution may result in a large final error after (6) is applied
if the adaptive codebook contribution is large.

The complexity of the search described above isO (KN).
Assuming that the number of bits it takes to encodeK pulses
is proportional toK log2 N1, we can rewrite the complexity
of searching a codebook withb bits asO (bN/ log2 N). By
comparison, the complexity involved in searching a stochastic
codebook withb bits isO

(
2bN

)
, which is significantly higher.

While the structure of the pulse codebook we use has
similarities with ACELP [12], the search in CELT is direct and
does not involve filtering operations. On the other hand, the
cost function is more complex, since the fixed codebook gain
depends on both the pitch gain and the code vector selected.

1) Reduced search complexity: For large codebooks, the
complexity of the search procedure described above can be
high. We adopt two strategies to reduce that complexity:

• selecting more than one pulse at a time whenK ≫ N ,
and

• using the simpler cost functionJ = −r
T
y/
√

yT y for
all but the last pulse.

When the number of pulses is large compared to the number
of samples in a band, we can have a large number of pulses
in each position – in some cases, up to 64 pulses in only 3
positions. Clearly, when starting the search, there is little risk
in assigning more than one pulse to the position that minimises
the cost function in (17). Therefore in each step we assign

np = max (⌊(K − ka) /N⌋ , 1) (24)

pulses, whereka is the number of pulses that have already
been assigned and⌊·⌋ denotes truncation towards zero.

Although usingJ = −r
T
y/
√

yT y as the cost function
reduces quality, it is possible to find most pulses with it andto
use the correct cost function only when placing the last pulse.
This results in a speed gain without any significant quality
degradation.

2) Pulse vector encoding: The pulse vectory found for
each band needs to be encoded in the bit-stream. We assign
a unique index to each possibley by recursively partitioning
the codebook one pulse position at a time [13]. ForK pulses
in N samples, the number of codebook entries is

V (N, K) = V (N − 1, K)

+ V (N, K − 1) + V (N − 1, K − 1) , (25)

with V (N, 0) = 1 and V (0, K) = 0, K 6= 0. The fac-
torial pulse coding (FPC) method [14] also achieves a one-
to-one and onto map from pulse vectors to an index less than
V (N, K), and using FPC would produce bit-identical decoded
output, even though the compressed bit-stream would differ.
The main advantage of the index assignment method used in
CELT is that it does not require multiplications or divisions,
and can be implemented without a lookup table.

The size of a codeword,log2 V (N, K), is generally not an
integer. To avoid rounding up the the next integer and wasting

1As we will see in Section III-C2, this is only an approximation.
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an average of half a bit per band (10 bits per frame), we
encode the integers using the range coder. We use equiprobable
symbols, so the encoded size is perfectly predictable. The
total overhead of this method is at most one bit for all bands
combined [15], as has been observed in practice. We have also
found that the loss due to the use of equiprobable symbols (as
opposed to using the measured probability of each symbol) for
encoding the innovation is negligible, as one would expect for
a well-tuned vector quantisation codebook. For the complete
codec operating at 64 kbit/s, we have measured that pulse
vector coding results in a saving of 10.8 kbit/s when compared
to encoding each scalaryk value independently using an
optimal entropy coder.

3) Sparseness prevention: The lack of pitch prediction
above 8 kHz and the small number of pulses used at these
frequencies yields a sparsely quantised spectrum, with few
non-zero values. This causes the “birdie” artifacts commonly
found in low bit-rate MPEG-1 Layer 3 (MP3) encodings. To
mitigate this, we use a folded copy of the lower frequency
spectrum for the adaptive code vector,p. We encode a sign
bit to allow the spectrum to be inverted. The principle is
similar to [16], but is applied in the MDCT domain. The gain
g̃a of this adaptive codebook is pre-determined, and depends
only on the number of pulses being used and the width of
the band. It is given by

g̃a =
N

N + δK
(26)

whereδ = 6 has been found to provide an acceptable com-
promise between avoiding birdies and the harshness that can
result from spectral folding.

D. Bit allocation

Two of the parameter sets transmitted to the decoder are
encoded at variable rate: the energy in each band, which is
entropy coded, and the pitch period, which is not transmitted
if the pitch gains are all zero. To achieve a constant bit-rate
without a bit reservoir, we must adapt the rate of the innovation
quantisation. Since CELT frames are very short, we need to
minimise the amount of side information required to transmit
the bit allocation. Hence we do not transmit this information
explicitly, but rather infer it solely from the informationshared
between the encoder and the decoder. We first assume that
both the encoder and the decoder know how many 8-bit bytes
are used to encode the frame. This number is either agreed
on when establishing the communication or obtained during
the communication, e.g. the decoder knows the size of any
UDP datagram it receives. Given that, both the encoder and
the decoder can implement the same mechanism to determine
the innovation bit allocation.

This mechanism is based solely on the number of bits
remaining after encoding the energy and pitch parameters. A
static table determines the bit-allocation in each band given
only the number of bits available for quantising the innovation.
The correspondence between the number of bits in a band and
the number of pulses is given by (25). For a given number of
innovation bits, the distribution across the bands is constant
in time. This is equivalent to using a psychoacoustic masking

Table I
AVERAGE BIT ALLOCATION FOR EACH FRAME. FRACTIONAL BITS ARE
DUE TO THE HIGH RESOLUTION OF THE ENTROPY CODER AND TO THE

AVERAGING OVER ALL FRAMES.

Constant bit-rate
Parameter 46.9 kbit/s 64.8 kbit/s

Coarse energy (Q1) 36.0 35.9
Fine energy (Q1) 38.1 59.2
Pitch gain (Q2) 7.0 7.0

Pitch period 8.9 8.9
Innovation (Q3) 180.9 264.0

Unused 1.1 1.0
Total per frame 272 376
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Figure 5. Average per-band bit allocation for CELT and MP3 ata 64 kbit/s
constant bit-rate. The bit allocation shown is the number ofinnovation and
fine energy quantisation bits allocated to one band divided by the number
of MDCT bins in that band. The allocation for MP3 includes thebits from
its scale factors that exceed 6dB resolution to ensure a faircomparison. The
piecewise-constant lines also show the division of the bands for each codec.
The average bit-rate for the quantised MDCT data, excludingthe coarse
energy/scalefactor quantisation and any meta-data, is around 55 kbit/s for
each codec.

curve that follows the energy in each band. Because the bands
have a width of one Bark, the result models the masking
occuring within each critical band, but not the masking across
critical bands. Using this technique, no side information is
required to transmit the bit allocation.

The average bit allocation for all parameters is detailed
in Table I. In addition, Fig. 5 shows the average innovation
and fine energy (Q2 and Q3) bit allocation as a function
of frequency compared to MP3 for a bit-rate of 64 kbit/s.
We see that CELT requires a higher bit-rate to code the low
frequencies, which are often very tonal and difficult to encode
with short frames. On the other hand, the energy constraint
allows it to encode the high frequencies with fewer bits, while
still maintaining good quality (see the next section for a quality
comparison). Both codecs use approximately 10 kbit/s for
the remaining parameters, despite the fact that MP3 frames
are more than double the size of CELT frames (576-sample
granules vs 256-sample frames).

IV. EVALUATION AND DISCUSSION

We implemented the CELT codec in C using both float-
ing point and fixed point. The source code can be obtained
at http://www.celt-codec.org/downloads/ and the resultsare
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Table II
CHARACTERISTICS OF THE CODECS AT THE SAMPLING RATE USED.

CELT AAC-LD G.722.1C MP3
Rate (kHz) 44.1 44.1 32 44.1

Frame size (ms) 5.8 10.9 20 variable
Delay (ms) 8.7 34.8 40 >100

Bit-rate (kbit/s) 32-96 32-64 24,32,48 32-160

based on version 0.3.2 of the software. We used the floating-
point version, but the fixed-point version does not cause no-
ticeable quality degradation. Some audio samples are available
at http://www.celt-codec.org/samples/tasl/ .

A. Other low-delay codecs

We compare CELT with three other codecs: AAC-LD [17],
G.722.1C [18] and MPEG1 Layer III (MP3). The AAC-
LD implementation tested is the one included in Apple’s
QuickTime Pro (with the “best quality” option selected). Al-
though AAC-LD has a minimum delay of 20 ms, the Apple
implementation uses 512-sample frames and a bit reservoir,
which increases the total delay to 34.8 ms. The G.722.1C
implementation was obtained from the Polycom website2.
Despite the MP3 codec’s high delay, the evaluation includedit
as a well known comparison point. We used the LAME MP3
encoder (CBR mode, with a 20 kHz low-pass filter and no bit
reservoir), which significantly outperformed the dist10 refer-
ence MP3 encoder. Table II summarises the characteristics of
all the codecs used in the evaluation. All the codecs compared
have at least four times the delay of CELT.

Unlike AAC-LD and G.722.1C, the Fraunhofer Ultra-Low
Delay (ULD) codec [19] can achieve coding delays similar to
CELT using linear prediction with pre- and post-filtering [20].
Unfortunately, we were unable to obtain either an implemen-
tation or audio samples for that codec.

B. Subjective evaluation

Untrained listeners evaluated the basic audio quality of the
codecs using the MUlti Stimulus test with Hidden Reference
and Anchor (MUSHRA)3 [21] methodology. They were pre-
sented with audio samples compressed with CELT, AAC-LD,
G.722.1C, and MP3, in addition to low-pass anchors at 3.5 kHz
and 7 kHz. The 7 kHz anchor is the upper bound achievable
by wideband codecs such as G.722, AMR-WB, and G.729.1.

The first test included mostly speech samples, divided
equally between male and female and encoded at 48 kbit/s.
We used 2 British English speech samples from the EBU
Sound Quality Assessment Material (SQAM) and 4 American
English speech samples from the NTT Multi-Lingual Speech
Database for Telephonometry4. The test also included two
music samples: a pop music excerpt (Dave Matthews Band)
and an orchestra excerpt (Danse Macabre). For this test, the

2http://www.polycom.com/
3Using the RateIt graphical interface available at http://rateit.sf.net/
4We recovered the 44.1 kHz speech from the audio CD tracks and applied

a notch filter to remove an unwanted 15.7 kHz tone from the recording.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 Male  Female  Pop  Orchestra  Male2  Female2  Male3  Female3  All

Ref
AAC-LD

MP3

CELT
G.722.1C

7 kHz

3.5 kHz

Figure 6. MUSHRA listening test results at 48 kbit/s with 95%confidence
intervals.
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Figure 7. MUSHRA listening test results at 64 kbit/s with 95%confidence
intervals.

CELT codec used 46.9 kbit/s (34 bytes per frame). Fig. 6
shows the average ratings by 15 untrained listeners5.

A second listening test, at 64 kbit/s, included the following
samples: male speech (SQAM), female speech (SQAM),a
cappella singing (Suzanne Vega), vocal quartet (SQAM), pop
music (Dave Matthews Band), folk music (Leahy), castanets
(SQAM), and orchestra (Danse Macabre). For this test, the
exact CELT bit-rate was 64.8 kbit/s (47 bytes per frame). The
G.722.1C codec used 48 kbit/s, as this is the highest bit-rate
it supports. Fig. 7 shows the average ratings for these samples
were rated by the same 15 untrained listeners as in the previous
test.

The error bars shown in Fig. 6 and 7 represent the 95%
confidence interval for each codec, independently of the other
codecs. However, since listeners were always directly com-
paring the same sample encoded with all codecs, a paired

5Due to an initial problem in generating the 7 kHz anchor, we only include
results for it from the 5 listeners who took the test after theerror was
discovered. Results for other codecs and the 3.5 kHz anchor were not affected
by this error and represent data from all 15 listeners.
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Figure 8. PESQ LQO-MOS as a function of the random packet lossrate.

statistical test gives a better assessment of the statistical sig-
nificance. At 48 kbit/s, CELT is found to out-perform all other
codecs with greater than 95% confidence when using a paired
permutation test (a paired t-test also shows greater than 95%
confidence). At 64 kbit/s, the same statistical tests show that
CELT out-performs all codecs except AAC-LD. The results
for AAC-LD and G.722.1C are consistent with those reported
at 32 kbit/s in [17] although in our 64 kbit/s test, G.722.1C
was at a disadvantage, because it was the only codec operating
at 48 kbit/s, the highest rate it supported.

The 7 kHz low-pass anchors included in the listening tests
are equivalent to an uncompressed signal sampled at 16 kHz,
which is the upper bound achievable by any wideband codec,
such as G.722 and AMR-WB. Figs. 6 and 7 clearly show
that listeners have a very strong preference for CELT and the
other codecs over the 7 kHz low-pass anchor, demonstrating
the benefit of a high sampling rate.

C. Error robustness

The next experiment measured the robustness of CELT to
packet loss (frame erasure) and bit errors on speech data using
the Perceptual Evaluation of Speech Quality (PESQ) [22]
algorithm after down-sampling the decoder output to 8 kHz.
We used PESQ because most other objective quality evaluation
tools, such as PEAQ [23], are not designed to estimate quality
in noisy channels. The test included 144 files from the NTT
multilingual speech database, each from different speakers (72
male and 72 female), and 18 different languages.

The CELT codec is designed to be robust to packet
loss. After a lost packet, two predictors need to be re-
synchronised: the energy predictor and the pitch predictor.
The re-synchronisation time of the energy predictor depends
on the valueα, while that of the pitch predictor depends
on the pitch gain and period used in subsequent frames. In
practise the re-synchronisation time is limited by the pitch
predictor in voice segments.

Fig. 8 shows the PESQ LQO-MOS quality as a function of
the random packet loss rate. The quality remains good at 5%
random loss and degrades gracefully at higher loss rates. Fig. 9
shows the recovery from a lost packet during a voice segment.
The recovery time is similar to that obtained by CELP codecs,
which are also limited by pitch prediction. Informal listening

 0  10  20  30  40  50  60  70  80  90

Time [ms]

Error-free
Reconstructed

Error

Figure 9. Decoder re-synchronisation after a missing frame. (top) Error-free
decoding (middle) Reconstructed with missing packet (bottom) difference.
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Figure 10. PESQ LQO-MOS as a function of the bit error rate both with
SECDED on the the first 64 bits and without any FEC.

tests verified that most speech utterances remain intelligible
up to around 30% packet loss. Results for the Fraunhofer
ULD codec show quality degradation on a MUSHRA test with
0.5% packet loss [24], the highest level they tested. However,
one cannot infer the relative quality of CELT from this, as
MUSHRA and PESQ MOS are not directly comparable.

Although robustness to bit errors is not a specific aim for
the codec, we performed limited testing in bit-error conditions
at 46.9 kbit/s (34 bytes per frame). Testing was performed in
two different conditions: without any forward error correction
(FEC) and with a simple 8-bit single-error-correcting, double-
error-detecting (SECDED) code applied to the first 64 bits,
which mainly consist of energy and pitch information. In cases
where a double error was detected, the frame was considered
lost. An evaluation of the speech quality as a function of the
BER in Fig. 10 shows that robustness up to a3 × 10−4 BER
can be achieved at the cost of an 8 bit per frame (1.4 kbit/s)
reduction in the codec’s base bit-rate. Since the CELT bit-rate
can be adjusted dynamically, a good strategy for transmission
over a noisy channel, e.g. a wireless link, would be to adapt
the bit-rate to the channel capacity, as the AMR codecs do [2].

D. Complexity

The floating point version of the codec requires approxi-
mately 30 MFLOPS for encoding and decoding in real-time
at 44.1 kHz, or around 5% of a single core on a 2 GHz Intel
Core 2 CPU, without CPU-specific optimisation. When imple-
mented in fixed-point on a Texas Instruments TMS320C55x-
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Table III
IMPLEMENTATION COMPLEXITY OF CELT ON A TI

TMS320C55X-FAMILY DSP. PER-CHANNEL DATA IS PERSISTENT FROM

ONE FRAME TO ANOTHER, WHILE SCRATCH DATA IS ONLY REQUIRED

WHILE THE CODEC IS EXECUTING.

Encoder Decoder Both
Computation (MIPS) 68 36 104
Per-channel RAM (kB) 5.1 4.6 9.7
Scratch data RAM (kB) 5.7 2.6 5.7
Table data ROM (kB) 6 3 6
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Figure 11. Bit-rate required as a function of the algorithmic delay to achieve
a constant quality.

family DSP, it requires 104 MIPS to perform both encoding
and decoding in real-time, using 7.7 kWords (15.4 kB) of data
RAM. Table III gives more details of the complexity. This
makes CELT comparable to AAC-LD, although more complex
than G.722.1C, which has very low complexity.

E. Reducing the delay

We have shown results here for CELT operating with
256-sample frames and a 384-sample total algorithmic delay
(8.7 ms at 44.1 kHz). The same codec can be used with even
smaller frame sizes. Fig. 11 shows the bit-rate required to
achieve a constant quality level when lowering the algorithmic
delay. The reference quality is that obtained at 46.9 kbit/s
with 8.7 ms delay and is measured using PQevalAudio6, an
implementation of the PEAQ basic model [23]. We observe
that CELT scales well down to 3 ms delay, at which point
the required bit-rate goes up very quickly. This is largely
because the cost of encoding the band energies and the pitch
information is nearly constant per frame, regardless of the
frame size.

V. CONCLUSION

We proposed a new constrained-energy lapped transform
(CELT) structure for speech coding at high sampling rates
and very low-delay. The CELT algorithm can achieve high-
quality coding at low delay by using an efficient algebraic
shape-gain quantiser that preserves the spectral envelopeof
the signal, while minimising the side information transmitted.

6http://www-mmsp.ece.mcgill.ca/Documents/Software/Packages/AFsp/
PQevalAudio.html

Table IV
DETAILED INNOVATION BIT ALLOCATION FOR A FRAME ENCODED AT
64.8KBIT /S. FOR EACH BAND, WE GIVE THE FREQUENCY(IN MDCT

BINS) WHERE THE BAND STARTS, THE WIDTH OF THE BAND (IN MDCT
BINS), THE NUMBER OF PULSES ALLOCATED TO THE BAND, AND THE

NUMBER OF BITS REQUIRED(log
2

V (N, K)). ALTHOUGH NO PULSE IS

ASSIGNED TO ITS INNOVATION, BAND 19 STILL USES ONE BIT FOR THE

FOLDING SIGN (SECTION III-C3). BAND 20, CORRESPONDING TO

FREQUENCIES ABOVE20 KHZ, IS NOT CODED AND IS SET TO ZERO AT THE
DECODER.

Frame #270 – Dave Matthews Band
Band Start Width (N ) Pulses (K) Bits

0 0 3 38 12.5
1 3 3 28 11.6
2 6 3 20 10.6
3 9 3 15 9.8
4 12 3 15 9.8
5 15 3 15 9.8
6 18 3 15 9.8
7 21 3 14 9.6
8 24 3 20 10.6
9 27 4 28 15.8
10 31 6 13 17.7
11 37 6 7 13.4
12 43 8 6 14.7
13 51 11 5 15.4
14 62 12 5 16.1
15 74 16 6 21.6
16 90 20 5 20.7
17 110 30 4 20.0
18 140 40 2 12.6
19 180 53 0 1

(20) 233 23 not coded 0
Innovation total 263.4

Overhead and padding 1.3

Additionally, a time-domain pitch predictor partially compen-
sates for the poor frequency resolution obtained with the short
MDCT windows. Results show that at 48 kbit/s and 64 kbit/s,
CELT out-performs G.722.1C and MP3 on our test data and is
comparable to AAC-LD, despite having less than one fourth of
the algorithmic delay of the codecs to which it was compared.

There are still several ways to improve CELT, such as by
incorporating better psychoacoustic masking in the dynamic
bit allocation. This is a difficult problem both because there
are few bits available for coding the allocation and because
the analysis window is short.

APPENDIX A
EXAMPLE BIT-STREAM

Consider a single (typical) frame from the Dave Matthews
Band excerpt encoded at 64.8 kbit/s. In that frame, the pitch
gain is first encoded using 7 bits. Since the gain is non-zero,
the pitch period is then encoded using 9.3 bits7 (log2 641). The
energy in each band is encoded with 94.7 bits, followed by
the innovation, which requires 263.4 bits, as detailed in Table
IV. The innovation bits in Table IV include the sparseness
prevention signs (one each for bands 15-19), as explained in
Section III-C3. One bit is left unused to account for overhead
due to finite precision arithmetic in the range coder, for a total
of 376 bits (47 bytes). The bit allocation for all other frames

7Fractional bits are possible because we use a range coder with equiprob-
able symbols.
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is very similar, with the main variation occuring in frames that
do not have a pitch period (gain is zero).
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